Pages

Wednesday, October 29, 2008

DATA MINING USING NEURAL NETWORKS

DATA MINING USING NEURAL NETWORKS
Abstract
The past two decades has seen a dramatic increase in the amount of information or data being stored in electronic format. This accumulation of data has taken place at an explosive rate. It has been estimated that the amount of information in the world doubles every 20 months and the size and number of databases are increasing even faster. The increase in use of electronic data gathering devices such as point-of-sale or remote sensing devices has contributed to this explosion of available data. The problem of effectively utilizing these massive volumes of data is becoming a major problem for all enterprises.
Data storage became easier as the availability of large amounts of computing power at low cost ie the cost of processing power and storage is falling, made data cheap. There was also the introduction of new machine learning methods for knowledge representation based on logic programming etc. in addition to traditional statistical analysis of data. The new methods tend to be computationally intensive hence a demand for more processing power.
It was recognized that information is at the heart of business operations and that decision-makers could make use of the data stored to gain valuable insight into the business. Database Management systems gave access to the data stored but this was only a small part of what could be gained from the data. Traditional on-line transaction processing systems, OLTPs, are good at putting data into databases quickly, safely and efficiently but are not good at delivering meaningful analysis in return. Analyzing data can provide further knowledge about a business by going beyond the data explicitly stored to derive knowledge about the business. This is where Data Mining has obvious benefits for any enterprise.

No comments:

Post a Comment