Pages

Thursday, December 10, 2009

RESOURCE SHARING ON INTERNET

RESOURCE SHARING ON INTERNET

Introduction

It is commonly observed that the continued exponential growth in the capacity of fundamental computing resources — processing power, communication bandwidth, and storage is working a revolution in the capabilities and practices of the research community. It has become increasingly evident that the most revolutionary applications of this superabundance use resource sharing to enable new possibilities for collaboration and mutual benefit. Over the past 30 years, two basic models of resource sharing with different design goals have emerged. The differences between these two approaches, which are distinguished as the Computer Center and the Internet models, tend to generate divergent opportunity spaces, and it therefore becomes important to explore the alternative choices they present as we plan for and develop an information infrastructure for the scientific community in the next decade.
Interoperability and scalability are necessary design goals for distributed systems based on resource sharing, but the two models we consider differ in the positions they take along the continuum between total control and complete openness. The difference affects the tradeoffs they tend to make in fulfilling their other design goals. The Computer Center model, which came to maturity with the NSF Supercomputer Centers of the 80s and 90s, was developed in order to allow scarce and extremely valuable resources to be shared by a select community in an environment where security and accountability are major concerns. The form of sharing it implements is necessarily highly controlled – authentication and access control are its characteristic design issues. In the last few years this approach has given rise to a resource sharing paradigm known as information technology “Grids.” Grids are designed to flexibly aggregate various types of highly distributed resources into unified platforms on which a wide range of “virtual organizations” can build. By contrast, the Internet paradigm, which was developed over the same 30 year period, seeks to share network bandwidth for the purpose of universal communication among an international community of indefinite size. It uses lightweight allocation of network links via packet routing in a public infrastructure to create a system that is designed to be open and easy to use, both in the sense of giving easy access to a basic set of network services and of allowing easy addition of privately provisioned resources to the public infrastructure. While admission and accounting policies are difficult to implement in this model, the power of the universality and generality of the resource sharing it implements is undeniable.
Though experience with the Internet suggests that the transformative power of information technology is at its highest when the ease and openness of resource sharing is at its greatest, the Computer Center model experiencing a rebirth in the Grid while the Internet paradigm has yet to be applied to any resource other than communication bandwidth. But the Internet model can be applied to other kinds of resources, and that, with the current Internet and the Web as a foundation, such an application can lead to similarly powerful results. The storage technology developed is called the Internet Backplane Protocol (IBP), designed to test this hypothesis and explore its implications. IBP is our primary tool in the study of logistical networking, a field motivated by viewing data transmission and storage within unified framework.

No comments:

Post a Comment